Data sheet

Condensing pressure regulator, type KVR Differential pressure valve, type NRD

Features

- Accurate, adjustable pressure regulation
- Wide capacity and operating range
- Pulsation damping design
- Stainless steel bellows
- Compact angle design for easy installation in any position
- "Hermetic" brazed construction
- $1 / 4 \mathrm{in}$. Schrader valve for pressure gauge connection

The condensing pressure regulator, type KVR can be mounted in either the gas or liquid side of the condenser in refrigeration and air conditioning systems.
They are used to maintain a constant and sufficiently high condensing pressure with systems using air-cooled condensers.

They can also be used with valve types NRD or KVD to assure that adequate pressure is maintained on the receiver.

- Available with flare or ODF solder connections
- Can be used as a relief valve from high pressure to suction side
- KVR 12 - KVR 22: Compliant with ATEX hazard zone 2
- NRD: for use with HCFC, HFC and HC refrigerants

Data sheet | Condensing pressure regulator, type KVR and differential pressure valve, type NRD
$\begin{array}{ll}\text { Approvals } & \begin{array}{l}\text { UL LISTED, file SA7200 } \\ \text { GOST AN30 }\end{array}\end{array}$

Technical data

Metric conversions
$1 \mathrm{psi}=0.07$ bar
${ }^{5} / 9\left(\mathrm{t}_{1}{ }^{\circ} \mathrm{F}-32\right)=\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$

Refrigerants	HCFC, HFC and HC: KVR $12-$ KVR 22
	HCFC and non-flammable HFC: KVR $28-$ KVR 35
Regulation range	Pe $=73.00-254.00$ psig
	Factory setting $=145 \mathrm{psig}$
Maximum working pressure	KVR: PS/MWP $=406 \mathrm{psig}$
	NRD: $\mathrm{PS} / \mathrm{MWP}=667 \mathrm{psig}$
Maximum test pressure	KVR: Pe $=450 \mathrm{psig}$
	NRD: $\mathrm{Pe}=870 \mathrm{psig}$
Medium temperature range	KVR: $-49-266^{\circ} \mathrm{F}$
P band (full valve stroke)	KVR $12-$ KVR $22: 90 \mathrm{psi}$
	KVR $28-$ KVR $35: 72.5 \mathrm{psi}$
Opening differential pressure for NRD	Start opening: $\Delta \mathrm{p}=20 \mathrm{psi}$
	Fully open: $\Delta \mathrm{p}=43 \mathrm{psi}$

Ordering

KVR 12, KVR 15, KVR 22, KVR 28, KVR 35, NRD

Type	Rated liquid capacity ${ }^{1}$) (Evaporator capacity) [TR]				Rated hot gas ${ }^{1}$) (Evaporator capacity) [TR]				Flare connection ${ }^{2}$) [in.]	Code no.	Solder connection [in.]	Code no.
	R22	R134a	$\begin{aligned} & \text { R404A/ } \\ & \text { R507 } \end{aligned}$	R407C	R22	R134a	$\begin{aligned} & \text { R404A/ } \\ & \text { R507 } \end{aligned}$	R407C				
KVR 12	12.7	11.8	8.2	13.8	4.13	3.03	3.27	4.50	1/2	034L0091	1/2	034L0093
KVR 15	12.7	11.8	8.2	13.8	4.13	3.03	3.27	4.50	5/8	034L0092	5/8	034L0097
KVR 22	12.7	11.8	8.2	13.8	4.13	3.03	3.27	4.50	-	-	7/8	034L0094
KVR 28	32.6	30.2	20.9	35.5	10.93	8.04	8.66	11.91	-	-	$11 / 8$	034L0095
KVR 35	32.6	30.2	20.9	35.5	10.93	8.04	8.66	11.91	-	-	$13 / 8$	034L0100
NRD	-	-	-	-	-	-	-	-	-	-	1/2	020-1132

The connection dimensions chosen must not be too small, as gas velocities in excess of $130 \mathrm{ft} / \mathrm{s}$ at the inlet of the regulator can result in flow noise.
${ }^{1}$) Rated capacity is based on:

- evaporating temperature $\mathrm{t}_{\mathrm{e}}=40^{\circ} \mathrm{F}$
- condensing temperature $\mathrm{t}_{\mathrm{c}}=110^{\circ} \mathrm{F}$
- pressure drop across the valve
$\Delta p=3$ psi for liquid capacity $\Delta p=6 p s i$ for hot gas capacity
${ }^{2}$) KVR are delivered without flare nuts. Separate flare nuts can be delivered:
- $1 / 2$ in. code no. 011L1103
- $5 / 8$ in. code no. 011 L 1167

Data sheet | Condensing pressure regulator, type KVR and differential pressure valve, type NRD

Liquid capacity	Max. regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$)							Hot gas capacity [TR] (Evaporator capacity)				
	Type	Condensing temperature t_{c}	Liquid capacity [TR] (Evaporator capacity)									
			Offset 45 psi					Offset 45 psi				
			Pressure drop $\Delta \mathrm{p}$ [psi]					Pressure drop $\Delta \mathrm{p}$ [psi]				
		[$\left.{ }^{\circ} \mathrm{F}\right]$	1.5	3	6	10	25	1.5	3	6	10	25
							R22					R22
	KVR 12 KVR 15 KVR 22	50	13.1	17.6	25.2	32.9	52.6	1.81	2.47	3.52	4.51	6.86
		70	11.9	16.0	23.0	30.0	48.0	1.92	2.62	3.75	4.83	7.44
		90	10.6	14.4	20.8	27.0	43.2	2.04	2.76	3.96	5.12	7.94
		110	9.2	12.7	18.4	23.9	38.2	2.13	2.89	4.13	5.36	8.34
		130	7.8	11.0	16.0	20.7	33.1	2.20	2.98	4.27	5.54	8.64
	KVR 28 KVR 35	50	33.5	45.0	64.4	84.2	134.6	4.77	6.50	9.31	11.95	18.15
		70	30.4	41.1	58.9	76.8	122.8	5.11	6.93	9.92	12.79	19.66
		90	27.1	37.0	53.2	69.2	110.6	5.42	7.34	10.48	13.54	20.98
		110	23.6	32.6	47.2	61.3	97.8	5.67	7.65	10.93	14.16	22.06
		130	20.0	28.0	40.9	53.0	84.6	5.79	7.83	11.23	14.60	22.85
	R134a							R134a				
		50	12.0	16.9	24.0	31.0	49.1	1.40	1.97	2.75	3.50	5.15
		70	11.9	16.0	23.0	30.0	48.0	1.92	2.62	3.75	4.83	7.44
		90	9.6	13.6	19.2	24.8	39.3	1.50	2.12	2.97	3.80	5.75
		110	8.4	11.8	16.7	21.6	34.2	1.53	2.15	3.03	3.87	5.92
		130	7.1	10.0	14.2	18.3	29.0	1.52	2.14	3.01	3.86	5.95
	KVR 28 KVR 35	50	30.7	43.4	61.3	79.2	126.0	3.72	5.24	7.31	9.26	13.60
Metric conversions $1 \mathrm{psi}=0.07 \mathrm{bar}$ ${ }^{5} / 9\left(\mathrm{t}_{1}{ }^{\circ} \mathrm{F}-32\right)=\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$ $1 \mathrm{TR}=3.5 \mathrm{~kW}$ $1 \mathrm{in} .=25.4 \mathrm{~mm}$		70	27.6	39.1	55.3	71.4	113.0	3.87	5.44	7.63	9.71	14.49
		90	24.5	34.7	49.1	63.4	100.0	3.99	5.62	7.89	10.07	15.22
		110	21.4	30.2	42.8	55.3	87.5	4.06	5.71	8.04	10.28	15.69
		130	18.1	25.6	36.3	46.9	74.2	4.03	5.68	8.00	10.25	15.77
	${ }^{1}$) The cap - Eva - For	cities are based on orating temperatu ther evaporating	$\mathrm{t}_{\mathrm{e}}=4$ mpera	res see	le below							

Correction factors for evaporating temperature t_{e}

$\mathbf{t}_{\mathbf{e}}$	$\mathbf{- 4 0}$	$\mathbf{- 3 0}$	$\mathbf{- 2 0}$	$\mathbf{- 1 0}$	$\mathbf{0}$	$\mathbf{1 0}$
$\left[{ }^{\circ} \mathrm{F}\right]$	1.12	1.09	1.05	1.03	1.0	0.98
R22	1.22	1.16	1.10	1.04	1.0	0.96
R134a						

[^0]Data sheet | Condensing pressure regulator, type KVR and differential pressure valve, type NRD

Liquid capacity

Metric conversions
$1 \mathrm{psi}=0.07 \mathrm{bar}$
${ }^{5} / 9\left(\mathrm{t}_{1}{ }^{\circ} \mathrm{F}-32\right)=\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$
$1 \mathrm{TR}=3.5 \mathrm{~kW}$
$1 \mathrm{in} .=25.4 \mathrm{~mm}$

Max. regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$)											
Type	Condensing temperature t_{c}	Liquid capacity [TR] (Evaporator capacity)					Hot gas capacity [TR] (Evaporator capacity)				
		Offset 45 psi					Offset 45 psi				
		Pressure drop $\Delta \mathrm{p}$ [psi]					Pressure drop $\Delta \mathrm{p}$ [psi]				
	[${ }^{\mathrm{F}}$]	1.5	3	6	10	25	1.5	3	6	10	25
R404A/R507							R404A/R507				
KVR 12 KVR 15 KVR 22	50	9.2	12.4	17.6	23.0	37.0	1.63	2.09	2.99	3.84	5.87
	70	8.1	10.9	15.7	20.4	32.7	1.60	2.17	3.10	4.00	6.17
	90	7.0	9.6	13.8	17.9	28.7	1.65	2.25	3.21	4.15	6.45
	110	5.9	8.2	11.8	15.4	24.5	1.68	2.28	3.27	4.24	6.60
	130	4.8	6.8	10.0	13.0	20.6	1.69	2.31	3.34	4.34	6.78
KVR 28 KVR 35	50	23.6	31.7	45.2	59.0	94.5	4.06	5.52	7.89	10.15	15.48
	70	20.8	27.9	40.1	52.2	83.6	4.24	5.74	8.20	10.58	16.32
	90	17.9	24.5	35.2	45.9	73.4	4.41	5.96	8.50	10.99	17.06
	110	15.1	20.9	30.3	39.3	62.7	4.88	6.06	8.66	11.22	17.49
	130	12.3	17.4	25.7	33.1	52.7	4.49	6.12	8.82	11.45	17.92
R407C							R407C				
KVR 12 KVR 15 KVR 22	50	4.2	19.0	27.2	35.5	56.8	1.96	2.67	3.80	4.87	7.41
	70	12.9	17.3	24.8	32.4	51.8	2.07	2.83	4.05	5.22	8.04
	90	11.5	15.6	22.5	29.2	46.7	2.20	2.98	4.28	5.53	8.58
	110	10.0	13.8	20.1	26.1	41.6	2.32	3.15	4.50	5.84	9.09
	130	8.6	12.1	17.6	22.8	36.4	2.42	3.28	4.70	6.09	9.50
KVR 28 KVR 35	50	36.2	48.6	69.6	90.9	145.4	5.15	7.02	10.06	12.91	19.60
	70	32.8	44.4	63.6	82.9	132.6	5.52	7.48	10.71	13.81	21.23
	90	29.3	40.0	57.5	74.7	119.5	5.85	7.93	11.32	16.62	22.66
	110	25.7	35.5	51.5	66.8	106.6	6.18	8.34	11.91	15.43	24.05
	130	22.0	30.8	45.0	58.3	93.1	6.37	8.61	12.35	16.06	25.14

${ }^{1}$) The capacities are based on:
Evaporating temperature $\mathrm{t}_{\mathrm{e}}=40^{\circ} \mathrm{F}$.
For other evaporating temperatures see table below.

Correction factors (evaporating temperature)

$\mathbf{t}_{\mathbf{e}}$	$\mathbf{- 4 0}$	$\mathbf{- 2 0}$	$\mathbf{0}$	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$
$\left[{ }^{\circ} \mathrm{F}\right]$	1.32	1.22	1.14	1.06	1.0	0.95
R404A / R507	1.20	1.15	1.09	1.04	1.0	0.96
R407C						

System capacity x correction factor $=$ table capacity.

Sizing	For optimum performance, it is important to select a KVR valve according to system conditions and application.	- The following data must be used when sizing - a KVR valve: - Refrigerant: HCFC, HFC and HC: KVR 12 - KVR 22, HCFC and non-flammable HFC: KVR 28 - KVR 35 - Evaporator capacity Q_{e} in [TR] - Evaporating temperature t_{e} in [$\left.{ }^{\circ} \mathrm{F}\right]$ - Condensing temperature t_{c} in [$\left.{ }^{\circ} \mathrm{F}\right]$ - Connection type: flare or solder - Connection size in [in.]
Valve selection	Example When selecting the appropriate valve it may be necessary to convert the actual evaporator capacity using a correction factors. This is required when your system conditions are different than the table conditions. The selection is also dependant on the acceptable pressure drop across the valve. The following example illustrates how this is done.	KVR in a liquid capacity application - Refrigerant: R22 example - Evaporator capacity: $\mathrm{Q}_{\mathrm{e}}=28.7$ TR - Evaporating temperature: $\mathrm{t}_{\mathrm{e}}=-40^{\circ} \mathrm{F} \sim 21 \mathrm{psig}$ - Condensing temperature: $\mathrm{t}_{\mathrm{c}}=90^{\circ} \mathrm{F} \sim 170 \mathrm{psig}$ - Connection type: Solder - Connection size: $5 / 8 \mathrm{in}$.

Application example
Liquid capacity application

Application example
Hot gas capacity application

Data sheet | Condensing pressure regulator, type KVR and differential pressure valve, type NRD

Valve selection (continued)

Step 1
Determine the correction factor for evaporating From the correction factors table an evaporating temperature t_{e}. temperature of $-40^{\circ} \mathrm{F}$, R22 corresponds to a factor of 1.12.
Correction factors

t_{e}						
[${ }^{\circ} \mathrm{F}$]					0	10
R22	1.12	1.09	1.05	1.03	1.0	0.98
R134a	1.22	1.16	1.10	1.04	1.0	0.96
R404A, R507	1.32	1.22	1.14	1.06	1.0	0.95
R407C	1.20	1.15	1.09	1.04	1.0	0.96
Plant capacity x correction factor $=$ table capacity						

Step 2
Corrected evaporator capacity is
$\mathrm{Q}_{\mathrm{e}}=28.7 \times 1.12=32.14 \mathrm{TR}$

Step 3
Now select the appropriate capacity table and choose the line for a condensing temperature $\mathrm{t}_{\mathrm{c}}=90^{\circ} \mathrm{F}$.
Using the corrected evaporator capacity, select a valve that provides an equivalent or greater capacity at an acceptable pressure drop.

Step 4
KVR 15, $5 / 8$ in. solder connection:
code no. 034L0097

Data sheet | Condensing pressure regulator, type KVR and differential pressure valve, type NRD

Design / Function

1. Seal cap
2. Gasket
3. Setting screw
4. Main spring
5. Valve body
6. Equalizing bellows
7. Valve plate
8. Valve seat
9. Damping device
10. Pressure gauge connection
11. Cap
12. Gasket
13. Insert
14. Piston
15. Valve plate
16. Piston guide
17. Valve body
18. Spring

The condensing pressure regulator, type KVR opens upon a rise in pressure on the inlet side, i.e. when the pressure in the condenser reaches the set value. KVR regulates on the inlet pressure only. Pressure variations on the outlet side of the regulator do not affect the degree of opening, as the valve is equipped with equalization bellows (6). The bellows has an effective area corresponding to that of the valve seat neutralizing any changes to the setting.

NRD

The valve is also equipped with a damping device (9) providing protection against pulsations which can normally arise in a refrigeration system.
The damping device helps to ensure long life for the regulator without impairing regulation accuracy.
Differential valve type NRD begins to open when the pressure drop in the valve is 20 psig, and is fully open when the pressure drop is 43 psig.
Differential valve type NRD begins to open when the pressure drop in the valve is 1.4 bar, and is fully open when the pressure drop is 3 bar.

Data sheet | Condensing pressure regulator, type KVR and differential pressure valve, type NRD

P-band and Offset	Principle diagram
Metric conversions $1 \mathrm{psi}=0.07$ bar $5 / 9\left(\mathrm{t}_{1}{ }^{\circ} \mathrm{F}-32\right)=\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$	
	Proportional band The proportional band or P -band is defined as the amount of pressure required to move the valve plate from closed (set point) to fully open position. Example If the valve is set to open at 120 psig and the valve P-band is 90 psi, the valve will give maximum capacity when the inlet pressure reaches 210 psig. Offset The offset is defined as the permissible pressure variation in condenser pressure (temperature). It is calculated as the difference between the required working pressure and the minimum allowable pressure. The offset is always a part of the P-band. Example with R22 A working temperature of $110^{\circ} \mathrm{F} \sim 230$ psig is required, and the temperature must not drop below $100^{\circ} \mathrm{C} \sim 200$ psig (set point). The offset will then be 30 psi.

Dimensions and weights

KVR

NRD

Metric conversions
$1 \mathrm{in} .=25.4 \mathrm{~mm}$
$1 \mathrm{lb}=0.454 \mathrm{~kg}$

Type	Connection		NV1	NV_{2}	H_{1}	H_{2}	H_{3}	L	L1	B_{1}	B_{2}	C Solder	øD	Net weight [kg]
	Flare	Solder ODF												
KVR 12	1/2	1/2	0.748	0.748	7.045	3.898	2.598	-	-	2.520	1.614	0.394	1.181	0.88
KVR 15	5/8	5/8	0.945	0.945	7.045	3.898	2.598	-	-	2.520	1.614	0.472	1.181	0.88
KVR 22	-	7/8	-	-	7.045	3.898	2.598	-	-	2.520	1.614	0.669	1.181	0.88
KVR 28	-	$11 / 8$	-	-	10.197	5.945	4.055	-	-	4.134	1.890	0.787	1.693	2.20
KVR 35	-	$13 / 8$	-	-	10.197	5.945	4.055	-	-	4.134	1.890	0.984	1.693	2.20
NRD	-	1/2	-	-	-	-	-	5.157	0.394	-	-	-	0.866	0.22

[^1]
[^0]: System capacity x correction factor $=$ table capacity.

[^1]: Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.
 All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

